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1. Introduction

Recently, Calabi-Yau singularities have played a prominent role in “bottom-up” approaches

connecting string theory to particle physics. The basic idea behind these constructions is

to first locate a set of D-branes giving rise to the desired particle physics model at the

singularity and later on perform the embedding into a compact Calabi-Yau threefold (CY3).

In this paper we study the simplest type of CY3 singularities, the conifold, and determine

the non-perturbative quantum corrections to the effective action for the (bulk) modulus

which controls the size of the vanishing cycle. We expect that these type of corrections will

become relevant when embedding the singularity into a full-fledged CY3 compactification.

Geometrically, a conifold point is a point in the moduli space where the CY3 becomes

singular by developing a set of conical singularities (nodes) with base S2 × S3. Locally

these nodes can be resolved by either carrying out a deformation, by expanding the node

into an S3, or a small resolution expanding the node into an S2. The process of shrinking a

set of two-cycles S2 to points and subsequently re-expanding the singularities into S3’s (or

vice versa) is called a conifold transition and connects moduli spaces of CY3 with different

Hodge numbers [1, 2].

When approaching a conifold point by degenerating a complex structure (S3 → 0) and

a Kähler structure (S2 → 0) in type IIB and type IIA string compactifications, respectively,

the vector multiplet moduli space of the low energy effective action (LEEA) develops a

logarithmic singularity. These singularities can be attributed to illegally integrating out

D3 (D2) branes wrapping the vanishing cycles, which, at the conifold point, give rise to
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Figure 1: Illustration of the CY3 moduli space close to a conifold point. For more information

on conifold singularities we refer to [3, 6].

extra massless states [3]. On the other hand we can also approach the conifold point by

degenerating a Kähler structure on the type IIB or a complex structure on the type IIA

side. This leads to a logarithmic singularity in the hypermultiplet sector of the LEEA. In

this case, however, the theory has no BPS states which could wrap the vanishing cycles and

could have an interpretation in terms of four-dimensional particles. One expects, however,

that non-perturbative string effects originating from instantons [4] become important in

this regime since the real part of their instanton actions are proportional to the volume

of the shrinking cycle so that they are no longer suppressed in the limit where the cycle

shrinks to zero. See figure 1 for a schematic illustration. Indeed, as was shown in [5] in

the context of IIA string theory, spacetime instanton effects survive in the effective field

theory even in the rigid limit where gravity decouples, MPl → ∞.

More recently, new exact results were obtained in [7] for IIB strings, in which the

contributions coming from worldsheet instantons, D1-instantons and D(-1)-instantons to

the effective action were determined. Since these results are obtained at a generic point

in the moduli space, we can study the behavior near the conifold point, where a two-cycle

shrinks to zero size and gravity is decoupled. In this limit only worldsheet and D1-instanton

corrections survive, and we obtain the resulting IIB hypermultiplet moduli space metric in

the neighborhood of the conifold.

Our analysis allows us to perform a non-perturbative test of mirror symmetry, which

states that the hypermultiplet moduli spaces in type IIA and type IIB on the mirror,

after including all quantum corrections, must be the same. After resumming the instanton

series on the IIB side, we determine the mirror map and show that the resulting hyperkähler

geometry is exactly the one obtained in [5]. This provides a nice demonstration of open

string mirror symmetry on the hypermultiplet moduli space.

2. IIA: summing up membrane instantons

In this section, we review the results of [5] who studied the geometry of the type IIA

hypermultiplet (HM) moduli space near a conifold singularity associated with vanishing
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three-cycle C3,

IIA HM conifold limit: z =

∫

C3

Ω → 0 . (2.1)

To decouple gravity, we consider the combined limit

z → 0 , λ → 0 , with
|z|
λ

= finite , (2.2)

where λ is the string coupling constant. In this limit, the moduli space becomes a four-

dimensional hyperkähler space which at the classical level, develops a singularity at z = 0.

The metric can be written as

ds2 = λ2[V −1(dt − ~A · d~y)2 + V |d~y|2] . (2.3)

Here, ~y = (u, z/λ, z̄/λ) with λ kept fixed and u and t are the RR scalars originating from

the expansion of the RR 3-form with respect to the harmonic three-forms associated with

the vanishing cycle C3 and its dual. The metric (2.3) is hyperkähler if

V −1∆V = 0 , ~∇V = ~∇× ~A , (2.4)

where

∆ = ∂2
u + 4λ2∂z∂z̄ . (2.5)

Classically, at string tree-level and for large |z|, the metric is determined by

V =
1

4π
ln

( 1

zz̄

)

, Au =
i

4π
ln

(z

z̄

)

, Az = 0 , Az̄ = 0 , (2.6)

and has a logarithmic singularity. Using T-duality, which exchanges vector multiplets and

hypermultiplets, this singularity has a counterpart in the vector multiplet moduli space of

the IIB theory compactified on the same Calabi-Yau threefold, where it corresponds to the

appearance of massless black holes [3]. In fact, the hyperkähler metric (2.3) is related to

the vector multiplet moduli space metric by the rigid c-map [8, 9]. We demonstrate this in

appendix A. This will be important for us, since we use a similar mechanism for the mirror

theory in the next section.

In [5] Ooguri and Vafa studied the resolution of the singularity based on D2-brane

instanton contributions. Thereby they focused on the situation where the period with

respect to C3 (A-cycle, say) vanishes while the dual period (from the B-cycle) remained

finite. In this case membrane instantons wrapping the vanishing cycle generate exponen-

tial corrections to the hypermultiplet moduli space of the form exp(−|z|/λ) with θ-angle

exp(2πiu), breaking the shift symmetry in u to a discrete subgroup. Membrane instantons

wrapping the dual B-cycle decouple in the rigid limit (2.2), so that the shift-symmetry in

t is unbroken. The instanton corrected V was then found to be [5]

V =
1

4π
ln

(

µ2

zz̄

)

+
1

2π

∑

m6=0

K0

(

2π
|mz|

λ

)

e2πimu , (2.7)

for some constant µ. This instanton sum contains the zero-th order modified Bessel func-

tion, accompanied by theta-angle-like terms set by the RR scalar u. The Bessel function
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can further be expanded for large argument, yielding exponentially suppressed terms of

the form exp[−2π(|mz|/λ − imu)] together with an infinite power series in λ that describe

the perturbative fluctuations around the instantons.

To exhibit the resolution of the singularity, one can perform a Poisson resummation,

V =
1

4π

∞
∑

n=−∞

(

1
√

(u − n)2 + zz̄/λ2
− 1

|n|

)

+ const , (2.8)

which leads to a regular metric at z = 0.

In the case of N three-cycles shrinking to zero size, it was argued in [5, 6] that this leads

to hyperkähler metrics with C
2/ZN singularities. This metric is again of the form (2.3),

with V → NV . In the next sections, we will reproduce all these results from type IIB

strings compactified on the mirror Calabi-Yau, in which N now counts the number of

vanishing two-cycles. Thereby, we perform a non-perturbative test of mirror symmetry.

3. Conifold singularities in type IIA vector multiplets

To understand the origin of the conifold singularity in the IIB hypermultiplet moduli space,

it is insightful to first study its counterpart on the type IIA vector multiplet side. The two

sectors are related by T-duality and, at string tree-level, the IIB hypermultiplet moduli

space is obtained from the IIA vector multiplet moduli space by the c-map [8, 10]. At a

generic point in the moduli space, the special geometry is determined by a holomorphic

prepotential F (X) homogeneous of degree two, which receives perturbative α′ corrections

from the worldsheet conformal field theory and worldsheet instantons

F (X) = Fcl(X) + Fpt(X) + Fws(X) . (3.1)

Here

Fcl(X) =
1

3!
κabc

XaXbXc

X1
, Fpt(X) = i

ζ(3)

2(2π)3
χE (X1)2 ,

Fws(X) = − i
1

(2π)3
(X1)2

∑

ka

nka Li3

(

e2πikaXa/X1
)

,
(3.2)

with κabc, χE and nka the triple intersection numbers, Euler number and instanton numbers

of the CY3 [11] respectively (see, e.g., [12] for additional background).

Microscopically the scalar fields in the vector multiplet sector arise from expanding the

Kähler form J and the ten-dimensional NS two-form B̂ in terms of harmonic two-forms ωa

of the CY3 [13],

B̂ = B2 + ba ωa , J = ta ωa , a = 2, . . . , h(1,1) + 1 . (3.3)

These fields are combined into complexified Kähler moduli

za = ba + ita =
Xa

X1
. (3.4)
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It is useful to factor out X1 and work with the holomorphic function f(z) determined by

F (X) = (X1)2f(z) , (3.5)

which is also computed by the genus zero topological string amplitude.

We are now interested in the conifold limit of the prepotential given above. In the

CY3 geometry the conical singularity is obtained by shrinking the size of a holomorphic

two-cycle C⋆ to zero:

geometrical conifold singularity: t⋆ → 0 . (3.6)

We note, however, that the condition (3.6) is not sufficient for causing a singularity in

the vector multiplet moduli space. Here the singularity arises if the complexified Kähler

modulus is taken to zero:

moduli space conifold singularity: z⋆ → 0 . (3.7)

This implies that we can avoid hitting the singularity by giving a non-vanishing real part

b⋆ to the complexified Kähler modulus. Thus in the moduli space the conifold singularity

is a line of complex codimension one.1

We can now take the conifold limit (3.7) for the prepotentials (3.2). Henceforth we

consider the case of a conical singularity where one particular complexified Kähler modulus

z⋆ = kaz
a (for one particular and fixed vector ka) shrinks to zero,2 while the others are

frozen to constant values. By inspection one then finds that the second derivatives of f

(determining the metric) arising from fcl(z) and fpt(z) are regular in this limit. Applying

the expansion formula (B.10) to the worldsheet instanton contribution, one obtains (we

denote N = nka for the fixed vector ka)

fws(z) =
N

4πi
z2 ln(z) + · · · , (3.8)

where the dots give rise to regular contributions in the Lagrangian. Computing

∂zfws =
N

2πi
z ln(z) + · · · , (3.9)

one finds that this is in precise agreement with the singular behavior found in the IIB

vector multiplet sector when going to the conifold point by shrinking N Lagrangian three-

cycles [3]. In this case, however, z is interpreted as a complex structure moduli arising

from the periods of the holomorphic three-form of the CY3.

The qualitative results of this section have already been discussed by Strominger [3],

where it was argued that the conifold singularities in the type IIA vector multiplet sector

originate from strong coupling effect involving worldsheet instantons.

1This is different from the five-dimensional case [14] where such singularities are of real codimension

one, so that a generic trajectory moving on the moduli space will not be able to avoid the singularity.
2We will drop the ”⋆” in the following.
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4. Conifold singularities in IIB hypermultiplets

In this section, we derive the conifold singularities that arise in the hypermultiplet moduli

space of type IIB compactifications. As in section 2, this singularity can be obtained from

the rigid c-map on the vector multiplet sector of the IIA theory. Here, we will rederive it

in a different way, starting from a generic point in the (tree-level) hypermultiplet moduli

space, and then taking the conifold limit in which gravity decouples. Our description of the

hypermultiplet moduli space geometry uses the conformal tensor calculus combined with

methods used in projective superspace. In this way, 4n-dimensional quaternion-Kähler

geometry can be reformulated in terms of 4(n + 1)-dimensional hyperkähler geometry. For

some background material we refer to [15 – 20].

The tree-level hypermultiplet moduli space can be conveniently written down in pro-

jective superspace [21], in terms of a contour integral representation [22] of the superspace

Lagrangian density

L(v, v̄, x) = Im

∮

dζ

2πiζ
H(ηI(ζ)) , (4.1)

in terms of h1,2 + 2 N = 2 tensor multipets

ηI(ζ) =
vI

ζ
+ xI − v̄Iζ , (4.2)

consisting of N = 1 real linear multiplets xI and N = 1 chiral multiplets vI . The La-

grangian density satisfies

LxIxJ + LvI v̄J = 0 , (4.3)

and expresses the fact that the dual hypermultiplets parameterize a hyperkähler manifold

with h1,2 + 2 commuting shift symmetries [22]. Tensor multiplets can be used because the

hypermultiplet geometries we need to consider have enough commuting isometries.3 The

scalars of the tensor multiplets transform as a triplet under SU(2) R-symmetry

~r I =
[

2 vI , 2 v̄I , xI
]

, ~r I · ~r J = 2vI v̄J + 2vJ v̄I + xIxJ . (4.4)

For a given prepotential F (X) encoding the vector multiplet couplings, the dual tensor

multiplet Lagrangian after the (local) c-map can be obtained by evaluating the following

contour integral [18]

L(v, v̄, x) = Im

∮

dζ

2πiζ

F (ηΛ)

η0
. (4.5)

Here ηI = {η0, ηΛ} with η0 being the conformal compensator. The contour integral is taken

around one of the roots ζ+ of ζη0 and can be evaluated in a gauge invariant way [23]4

L(v, v̄, x) = − i

2r0

(

F (ηΛ
+) − F̄ (ηΛ

−)
)

= − i

2r0

(

(η1
+)2f(z) − (η1

−)2f̄(z̄)
)

, (4.6)

3This is correct in the absence of three-brane and five-brane instantons, which are not relevant for the

purpose of this paper.
4In [24] a slightly more complicated formula for L has been given, taking into account the logarithmic

singularity at ζ = 0. The two expressions, however, only differ by terms linear in xI and therefore lead to

the same Lagrangian.
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with

ηΛ
+ = ηΛ(ζ+) = xΛ − x0

2

(

vΛ

v0
+

v̄Λ

v̄0

)

− r0

2

(

vΛ

v0
− v̄Λ

v̄0

)

, (4.7)

η− = (η+)∗ and za = ηa
+/η1

+.

From the superspace Lagrangian density L, one can compute a tensor potential [20]

χ(v, v̄, x) = −L(v, v̄, x) + xILxI , (4.8)

where LxI denotes the derivative with respect to xI . Dualizing the tensors to scalars,

this potential becomes the hyperkähler potential of the corresponding hyperkähler cone

above the quaternion-Kähler manifold [16]. Therefore, this function determines the entire

low-energy effective action. Using the homogeneity properties of L, one can derive the

identity
1

2
(χxIxJ + χvI v̄J ) = LxIxJ . (4.9)

The components LxIxJ then appear in the kinetic terms of the scalars xI and vI in the

effective Lagrangian.

Close to the conifold locus f(z) is given by (3.8). Substituting into (4.6) yields

Lcf(v, v̄, x) = − N

8πr0

(

(η1
+)2 z2 ln(z) + (η1

−)2 z̄2 ln(z̄)
)

. (4.10)

Here, only one tensor multiplet (v, v̄, x with x = kax
a etc.) captures the degrees of freedom,

and all others are frozen to constants. As one can explicitly check, this function satisfies

(

∂v∂v̄ + ∂2
x

)

Lcf(v, v̄, x) = 0 . (4.11)

This is precisely the constraint coming from rigid N = 2 supersymmetry and expresses the

fact that the geometry is four-dimensional hyperkähler. This is consistent with the fact

that in this limit, gravity is decoupled, and the target space of hypermultiplets becomes

hyperkähler.5

The function L is not yet to be compared with the function V appearing in the hy-

perkähler metric (2.3). As shown in [22], the relation is (in the dilatation gauge r0 = 1)

V = r0Lxx . (4.12)

Straightforward computation shows that, up to an additive constant,6

V = r0Lxx = −N

4π
ln(zz̄) , (4.13)

which precisely matches (2.6). This shows that at string tree-level, mirror symmetry works.

5The rigid limit in special Kähler geometry was studied in detail in [25]. It would be desirable to have

a similar study for hypermultiplets.
6This additive constant contributes to the parameter µ in (2.7) and depends on the particular CY3 under

consideration.
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5. IIB: resummation of D1-instantons

The starting point for including the D1-instantons is the modular invariant tensor poten-

tial [7]

χ(1) = −r0τ
1/2
2

(2π)3

∑

ka

nka

∑′

m,n

τ
3/2
2

|mτ + n|3
(

1 + 2π|mτ + n| kat
a
)

e−Sm,n , (5.1)

with instanton action

Sm,n = 2πka

(

|mτ + n| ta − im ca − in ba
)

. (5.2)

The primed sum is taken over all integers (m,n) ∈ Z
2\(0, 0). Here we used the notation

and conventions as in [7], and adapted the normalization in such a way that it is consistent

with the prepotential (3.2). The formula (5.1) contains all contributions coming from both

worldsheet instantons (sum over n) and D1-instantons (sum over m), which are the only

relevant configurations that survive in the conifold limit.7 The instanton action contains

the dilaton-axion complex

τ = τ1 + iτ2 = a + ie−φ , (5.3)

and the string coupling constant is given by λ = eφ. Furthermore, the ca are RR scalars

that generate the theta-angle like terms for the D1-instantons. The relation between the

“microscopic” scalars τ, za, ca and the scalars appearing in the tensor multiplets (4.2) is

given by [26, 23, 7]

τ =
1

(r0)2
(

~r 0 · ~r 1 + i |~r 0 × ~r 1|
)

, za =
ηa
+

η1
+

, ca =
(~r 0 × ~r 1) · (~r 1 × ~r a)

|~r 0 × ~r 1|2
. (5.4)

Following the discussion in section 4 we compute the function Lxx arising from (5.1).

The corresponding calculation can be simplified by noting that both χ(1) and Lxx are

invariant under local SU(2) R-symmetry. Thus we can adopt a particular SU(2) gauge,

e.g., setting x0 = x1 = 0, v0 = v̄0 and then taking the derivatives of (5.1) with respect to

x, v, v̄. Re-expressing the result in gauge invariant variables we find

Lxx(x, v, v̄) =
N

4πr0

∑′

m,n

1

|mτ + n| e−2π (|mτ+n| t−imc−inb) . (5.5)

To compare with the type IIA results obtained by Ooguri and Vafa we also have to take

the conifold limit. On the type IIB side this corresponds to

t → 0 , b → 0 , τ2 → ∞ , with τ2|b + it| = finite . (5.6)

Taking this limit requires resumming the instanton corrections appearing in (5.5). For this

purpose we split the double sum into the contributions coming from worldsheet instantons,

7Reference [7] also determined the contributions from D(-1) instantons. They yield exponential cor-

rections of the type exp(−|m|τ2) and therefore vanish in the limit of vanishing string coupling. Similar

arguments show that three-brane and five-brane instantons decouple in the conifold limit (5.6).
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m = 0, and the D1-instantons plus their bound states, m 6= 0, n ∈ Z:

Lxx(x, v, v̄) =
N

4πr0

∑

n 6=0

1

|n|e
−2π( |n| t−inb) +

N

4πr0

∑

m6=0

∑

n∈Z

1

|mτ + n| e−2π( |mτ+n| t−imc−inb) .

(5.7)

The first term can be summed up easily

N

4πr0

∑

n 6=0

1

|n| exp
{

− 2π (|n|t − inb)
}

= − N

4πr0
ln

(

1 − e2πiz
)

+ c.c.

≃ − N

4πr0
ln (zz̄) ,

(5.8)

where we took the conifold limit z = b + it → 0 in the second line. Observe that this

expression precisely reproduces (4.13). In order to take the conifold limit in the second line

of (5.7) we first carry out a Poisson resummation in n. Using the results of appendix B.2

we find

1

4πr0

∑

m6=0

∑

n∈Z

1

|mτ + n| e−2π( |mτ+n| t−imc−inb)

=
1

2πr0

∑

m6=0

∑

n∈Z

K0

(

2π|mτ2|
√

t2 + (b + n)2
)

e2πim(c−τ1(b+n))

≃ 1

2πr0

∑

m6=0

K0(2πτ2|mz|) e2πim(c−τ1b) .

(5.9)

Here we have taken the conifold limit (5.6) in the second step. Note that in this limit the

sum over n localizes such that only the n = 0 part gives a non-zero contribution.

Combining (5.8) and (5.9), we then obtain the D1-instanton corrected Lxx in the

conifold limit

N−1V = r0Lxx =
1

4π
ln

(

1

zz̄

)

+
1

2π

∑

m6=0

K0(2πτ2|mz|) e2πim(c−τ1b) (5.10)

Comparing this to the instanton corrected function V on the type IIA side in (2.7),

we find perfect agreement if we use the mirror map

λ = τ−1
2 , zIIA = zIIB , u = ±(c − τ1b) . (5.11)

The second relation states that, under mirror symmetry, the complex structure modulus

zIIA is equated to the complexified Kähler modulus zIIB associated with the vanishing

cycles, while the relation between u and c− τ1b is determined up to a sign only. Note that

selecting the minus sign, eq. (5.11) is precisely the classical mirror map obtained in [27].

This shows that the classical mirror map does not receive quantum corrections once the

conifold limit is taken.
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A. Conifold singularities from the rigid c-map

The leading term in the type IIB vector multiplet prepotential can be determined by

monodromy arguments

fws(z) =
1

4πi
z2 ln(z) + · · · , (A.1)

where z is associated with the vanishing period of the holomorphic three-form of the CY3.

We now interpret (A.1) as the prepotential underlying a rigid special Kähler geometry. We

can then use the rigid c-map [8, 9] to construct the dual hyperkähler metric. For a general

(rigid) prepotential F (XI) the resulting metric reads (up to a trivial rescaling)

−1

2
ds2 = i

(

dFI dX̄I − dF̄I dXI
)

− N IJ
(

dBI − FIKdAK
) (

dBJ − F̄JLdAL
)

, (A.2)

where FI = ∂F/∂XI and N IJ being the inverse of

NIJ = −i
(

FIJ − F̄IJ

)

. (A.3)

Evaluating (A.2) for the prepotential (A.1) then yields

ds2 =
1

2π
ln(zz̄) dz dz̄ − π

ln(zz̄)

(

dB − 1

2πi
ln(z) dA

) (

dB +
1

2πi
ln(z̄) dA

)

. (A.4)

Changing coordinates

B = 2λ t , A = −2λu , (A.5)

one finds precisely the metric (2.3) obtained from the solution (2.6).

B. Polylogarithms and resummation techniques

In this appendix we collect various facts used in the main part of the paper by giving a

brief introduction to polylogarithmic functions and Poisson resummation in sections B.1

and B.2, respectively.

– 10 –
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B.1 Polylogology

We start by summarizing some properties of polylogarithmic functions, essentially following

the appendix B of ref. [29]. For 0 < z < 1, the k-th polylogarithm is defined via the series

expansion

Lik(z) =

∞
∑

n=1

zn

nk
. (B.1)

It can be analytically continued to a multivalued function on the complex plane. Polylog-

arithms with different values of k are related by

z
d

dz
Lik(z) = Lik−1(z) . (B.2)

For k = 1 we have

Li1(z) = − log(1 − z) , (B.3)

which we used to sum up (5.8). From the definition (B.1) we find

Lik(0) = 0 , (k ∈ Z) and Lik(1) = ζ(k) , for k > 1 . (B.4)

Polylogarithms at values z and 1/z are related through the connection formula [30],

Lik(z) + (−1)k Lik(1/z) = −(2πi)k

k!
Bk

(

log(z)

2πi

)

, (B.5)

where Bk(·) are the Bernoulli polynomials. For Li3(z) this yields

Li3(z) − Li3(1/z) = −1

6
log3(z) − iπ

2
log2(z) +

π2

3
log(z) . (B.6)

From the point of view of the main part of the paper, it is more natural to work with the

variable x, z = ex. In this case (B.6) becomes

Li3(e
x) = Li3(e

−x) − 1

6
x3 − iπ

2
x2 +

π2

3
x . (B.7)

The conifold point corresponds to x = 0. At this point the function Li3(e
−x) has a loga-

rithmic branch point

Li3(e
−x) ≃ q(x) log(x) + p(x) for x → 0 , (B.8)

where q(x) and p(x) are power series

q(x) =
∞
∑

j=0

qjx
j , p(x) =

∞
∑

j=0

pjx
j . (B.9)

Analytically continuing the ansatz (B.8) to Li3(e
x) using log(−x) = log(x) + iπ and sub-

stituting into the connection formula (B.7) we obtain the following expansion for small

x

Li3
(

e−x
)

= −1

2
x2 ln(x) + p(x) , (B.10)

where p(x) = ζ(3) − ζ(2)x + 3
4x2 + 1

12x3 + O(x4) is polynomial in x. With this identity it

is then straightforward to determine the conifold limit of the prepotential (3.2).

– 11 –
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B.2 Poisson resummation

Taking the conifold limit in the D1-brane instanton sector in section 5 requires a Poisson

resummation in the worldsheet instanton number n. The technical details of this compu-

tation are collected in this appendix.

The basic ingredient for Poisson resummation is the following identity for the Dirac

delta-distribution
∑

n∈Z

δ(y − na) =
1

a

∑

n∈Z

e2πiny/a , a ∈ R
+ . (B.11)

Multiplying with an arbitrary function f(x+y) and integrating over y ∈ R gives the Poisson

resummation formula

∑

n∈Z

f(x + na) =
1

a

∑

n∈Z

f̃(2πn/a) e2πinx/a . (B.12)

Here f(x) and f̃(k) are related by Fourier-transformation

f̃(k) =

∫ ∞

−∞
dx f(x) e−ikx , f(x) =

1

2π

∫ ∞

−∞
dk f̃(k) eikx . (B.13)

We now apply this resummation to the second term in (5.7). Comparing

∑

n∈Z

1

|mτ + n| e−2π(|mτ+n| t−inb) =
∑

n∈Z

1
√

(mτ2)2 + (n + mτ1)2
e−2π(

√
(mτ2)2+(n+mτ1)2 t−inb)

(B.14)

to the general formula (B.12) we identify

f̃(2πn) =
2π

(α2 + (2πn + γ)2)1/2
e−(α2+(2πn+γ)2)1/2t , (B.15)

together with a = 1, x = b, α = 2πmτ2, and γ = 2πmτ1. The (inverse) Fourier transform

of (B.15) can be found using the following formula for Fourier cosine transformations [28]:

∫ ∞

0
dx (x2 + α2)−1/2 e−β (x2+α2)1/2

cos(xy) = K0

[

α(β2 + y2)1/2
]

. (B.16)

Substituting the result back into (B.12) then establishes the identity

∑

n∈Z

1

|mτ + n| e−2π(|mτ+n|t−inb) = 2
∑

n∈Z

K0

(

2π|mτ2|(t2 + (b + n)2)1/2
)

e−2πimτ1(b+n) .

(B.17)

This completes the derivation of the first step in (5.9).
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